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ABSTRACT

A modified cell cluster theory for calculating the specific free energy of a
solid is applied to a harmonic model of a perfect monatomic crystal corresponding
to the two dimensional triangular lattice with nearest neighbor interactions only.
This technique starts with the single particle (Einstein) theory and then evaluates
corrections from correlated motion of larger and larger sets of contiguous particles.
In the high temperature limit the general harmonic theory leads to an expression for

the Helmholtz free energy, FN’ in the form,

= - *
FN/NkT = -2 ln T* + D

with T* = kT/th. For the Einstein model DN = 1.0986 °‘°-- while the modified cell

cluster technique carried through sixth order gives DN =0.8565 --- . The technique is
also applied to a one dimensional harmonic model. From these and earlier studies

we are led to the conclusion that a cell cluster theory is an appropriate method for

treating anharmonic forces in a solid particularly at high temperatures and pressures.




I. INTRODUCTION

With the advent of new experimental results on the high temperature, high pressure
properties of solids there has in the last five years been a renewed interest in the
theory of the anharmonic properties of solids. Most of the work1 has started with the
classical harmonic approximation and has treated anharmonic effects by perturbation
theory. This approach, while extremely important theoretically, would not be appro-
priate at very high temperatures where anharmonic forces may play a dominant role in
the thermodynamic and elastic properties.

In a recent paper2 a technique was developed for estimating the free emergy of
the most extreme anharmonic model, a system of rigid spheres, at very high compressions.
Although the original aim of the work in Ref. (2) was to obtain only the limiting value
of the Helmholtz free energy per particle as V/VO -1 (VO is the close-packed value of
the volume V), one might very well consider this technique for treating anharmonic
forces in general. The method starts from the single particle or Einstein approxima-
tion and then evaluates the specific free-energy contributions from correlated motion
of larger and larger sets of contiguous particles. This type of sequential approxi-
mation has also been considered by Runnels3 who applied it to a one-dimensional system
of hard lines.

The major purpose of the present paper is to apply this technique to a purely
harmonic model of a simple crystal and to examine the method for this simplified case.

Since the earlier calculations2 were performed for a system of two dimensional rigid

(2]

discs in a close-packed hexagonal structure we choose as our model a two dimensional
triangular lattice with only nearest neighbor interactions. In this manner we obtain’
results for the same geometric lattice at the two extremes, the harmonic approximation
and the rigid disc system.

There arises naturally the question about the convergence of our sequence of
approximations. While we have been unable to prove anything in general (other than

that the entire sequence carried out to N'th order is an identity for the exact free

energy of N particles) the procedure has been carried out through 4th order (all



correlations of four particles) for rigid discs2 and in this paper through sixth order
(all correlations of six particles) for the harmonic model. Both results give every
appearance of generating a convergent sequence of approximations.

The technique we employ is closely related to the cell-cluster theory4 developed
by J. De Boer and his coworkers. However it is a modification which avoids the diffi-
cult combinatorial problems that have been associated with the cell cluster theory.

Although our primary purpose is to investigate a theory that would be suitable
for highly anharmonic solids one might also ask whether this technique can be used for
calculating the thermodyramic properties of an ideal crystal in the harmonic approxima-
tion. Since we consider only corrections to the Einstein approximation due to the
correlated motion of small groups of contiguous particles one realizes that this is
intrinsically a high temperature approximation and cannot represent the long wavelength
part of the lattice frequency distribution function. Moreover, a general development
of the high temperature crystalline entropy in the harmonic approximation can be
expressed in terms of a well defined perturbation series about the Einstein model and
this development has been carried out by Salter.5 Salter's series is based upon the
complete dynamical matrix for the lattice and as such is a more suitable and more elegant
way of treating the purely harmonic approximation. However it cannot be so readily

modified to treat large anharmonic effects,

II. BASIC METHOD

Although the approximation schemc described below can in principle be applied to
three dimensional, multi-component crystals including certain types of defects, for the
sake of illustration we consider a perfect monatomic crystal corresponding to the two
dimensional triangular lattice shown in Fig. 1. Moreover we restrict ourselves to
nearest neighbor interactions.

We are interested in a series of free energy functions for subfigures of the lattice.
A subfigure is a set of 4 arbitrarily chosen lattice sites with all possible nearest

neighbor bonds drawn among the { sites. From all possible subfigures we will consider



only connected ones (see table I for examples).

To define the free energy function for a connected subfigure we fix all atoms at
their lattice sites except for the { atoms in the subfigure and analyze the harmonic
vibrations of these 4 atoms. (See appendix A for an outline of this analysis.) From
these results we can evaluate the partition function for the atomic vibrations, which

in two dimensions has the form

24
Q¢ = azl exp ( -1/25hva’L’t)/[1-exp(-ﬁhva’L’t)] (II -1)
B =1/kT
The Va4, t(a =1,2---, 24) are the frequencies of the 24 normal modes of the connected

subfigure with 4 atoms of configuration t. The constants k and h are Boltzmann's
constant and Planck's constant respectively and T is the absolute temperature. Note
that we use two indices to identify each figure. The first, {, gives the number of
atoms in the figure, and the second, t, identifies the configuration.

The figures are numbered in the arbitrary manner given in table I. For each

subfigure we can then calculate a vibrational Helmholtz free energy function, F, by

Fop ="K 1nQ, (I1I-2)

To describe a macroscopic crystal we need to obtain the free energy F_. for an N atom

N
system with N 351023. To calculate FN we propose to adopt a systematic series of

approximations based on the functions FL N for small 4 . First we define a series
H

of functions W by means of recursion formulas as illustrated below for the first

1,t

few cases. See table I for figure references.

F11=%11

Fo1 =M 1% W

F = 3W + 2W + W

3,1 1,1 2,1 T 3,1 (11-3)
Fa g =Wy 2, + W

Fyg =30 30, 1 ¥ W34
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4.
The function W1 1 is a single particle free energy and we obtain the Einstein
3

approximation to F_, by the relation

N
Fy = W, (11-4)

The two particle free energy F2 1 is equated to this Einstein approximation plus
3

a correction term Wz 1 The Wz 1 can be considered to be the free energy for a pair
3 3 .

analogous to the pair potential function in the potential energy of a system. For

each figure we first approximate FL ¢ by the Einstein approximation {wl 1 and then
’ 3

correct this for all pairs, triplets, and so on, up to the £ - 1 particle subfigures

contained in the figure under consideration. In each case the correction factor is

given by some constant times the appropriate W. The difference between the exact FL ¢
E]

and this series of approximations then defines a new W&

,t

In general
£ -1 Ti Lt
= W II‘
et D 2, “i M T e (-3
i=1 j=1

where Ti is the number of different configurations of a connected subfigure of 1

i,t

particles (see table I) and the Ci j
3

are the number of figures of type (i,j) con-
tained in the figure (4,t).
If we now extend this relation to a macroscopic crystal of N particles and ignore

boundary effects (e.g. one can consider a square crystal with periodic boundary condi-

tions) we obtain

F_ =N + 3NW + 3NW + ONW + 2NW I

N 1,1 2,1 3,2 3,2 3,3
T~
N Ty (11-6)
=1 ol bt bt

where NgL ¢ is the number of ways in which the (4,t) figure can be placed on the lattice.
The combinatorial analysis for obtaining the 8y ¢ is given in appendix B and the By ¢
for £ =1,2,3,4,5,6 are given in table I. Physically we can think of first approximat-

ing the N particle crystal by N equivalent and independent oscillators and then
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successively correcting for all two, three, four and higher order particle correlations.

Although we can prove nothing about the convergence of this series of approximations,

one hopefully needs only terms for small L to obtain sufficiently accurate values for FN.
Since this scheme ignores long wavelength, i.e. low frequency, modes it appears

that it will be valid only at high temperatures. Therefore we concentrate our attention

on the high temperature limiting form of QL ¢

24

Q. =1 kT /hy

(11-7)
st o,4,t

Since we consider only nearest neighbor interactioms with a simple force constant

all frequencies v

a,d,t

are proportional to a fundamental frequency Vo

=Db
Vo, 2,t = Pa,4,t Yo

v __1_(_n_)1/2 (1I-8)
o 2m ' m
where # is the force constant for nearest neighbor interactions and m is the mass of

one atom. In this treatment we regard Vv, as a parameter and express all our results

in terms of a reduced temperature T¥.

T* = T/0 (II-9)
= n
® = hy_/
Thus equation (II-7) can be expressed in the form
T 28 24
Q=9 il (1/ba’{”t) (11I-10)
o=1
and
FL t
— — - x -
®T = =241nT%* + DL,t (11-11)
with 24
DL,t = z 1n ba,»{,,t.
o=1

Moreover since the W{,t/kT with 4 > 1 are independent of T* and can be computed from the
3

D terms, we obtain for a macroscopic N particle system the following form for the free

,t



energy.
FN/kT = -2N In T* + ND_ (11-12)

where DN can be computed from the series

N N
D, =D 1+(1/kT) z z"‘

(11-13)
N L =1 t=1

W
g&,t 4,t
and the modified recursion relations, which follow from equations (II-3) and (II-11) are

D

il

9,1 =Wy, W,y /KT

D

3,0 =301, % 2W2’1/-kT + W3’1/kT (11-14)

Thus we can, in the high temperature limit, focus our attention on the constant DN and

ask how well it is approximated by a few terms in the series of equation (II-13).

III. RESULTS FOR THE TRIANGULAR LATTICE
In the single particle Einstein Model one obtains for the high temperature limit
of the free energy per particle
FN/NkT = -2 1n T* + 1.0986. (III-1)
Collecting all the terms in the series in Eq. (II-13) for each value of £ we have for

successive terms in the expansion of the free energy per particle

N
F,/NKT = -2 InT* + £ d, , (111-2)
N £
T 1=1
L ~ -
dp = Z Bae Phe F Dpe T wL,t/kT
t=1

Ba ™

The high temperature corrections, DL £ due
- 3>

sum of all terms for each order 4 through sixth order yields the following results.

each figure are given in table I. The

=1. = ~-0.012
d1 1.0986 d4 0.0129
d2 = -0.1767 d5 = -0.0106 (I1I-3)
d3 = -0.0342 d6 = -0.0077

This gives an estimate of the free energy per particle through sixth order of
Fy/NKT = -2 In T* + 0.8565 (I11-4)

In Fig. 2 the successive estimates for the constant DN are plotted as a function of



7.
lﬁfl. Extrapolating graphically to 4 = ® we can also obtain as an extrapolated estimate

for the free energy per particle

FN/NkT =.21nT* +0.79 (111-5)

The successive corrections to the Einstein model through sixth order have also been
carried out for the complete free energy function given by Eqs. (II-1) and (II-2).
These results are displayed in Fig. (3) where the difference, AFN/NkT, between the
given order of approximation and the Einstein model is plotted as a function of 1A/L
for five isotherms.

AFN = FN(Einstein) - FN(order Ed) (111-6)

There is a suprisingly small temperature dependence in the rate of convergence of this
series of approximationms.

While the results for rigid diskgzthrough fourth order gave only a very small
correction (approximately .1% in the free energy per particle) to the single particle
or cell theory, we find that the same technique applied to the harmonic oscillator model
gives a relatively large correction to the single particle theory. The series of
corrections appears to converge although rather slowly. Empirically we find that the
successive corrections decrease linearly with 1//4 where { is the number of particles
in the cluster.

The calculation given here leads us to conclude that a modified cell-cluster
technique is an appropriate way to generate successive approximations to the free
energy function. We hope to extend these calculations to anharmonic models in the
future. .

The authors gratefully acknowledge the financial support for our computer operation
by the National Aeronautics and Space Administration through grant NSG 6-59. We are
also indebted to the Robert A. Welch Foundation for undergraduate fellowship support.

The calculations were carried out on The Rice University Computer with the matrix

programs provided by Mr. E. Seibert.



APPENDIX A: HARMONIC ANALYSIS OF CELL CLUSTERS ON A TRIANGULAR IATTICE

Restricting ourselves to nearest neighbor interactions we can regard each cell
cluster as a collection of point masses and elastic springs. The set of springs under
consideration are those associated with the bonds of each figure in Table I plus the
interactions between the vibrating particles and the neighboring fixed particles. Fig. 4
illustrates this for a typical six particle cluster (6, 24 from Table I). The 12
coordinates (an x,y coordinate for each particle) which describe this system are also
given in Fig. 4.

The potential energy for such a system can be written as a sum over all bonds or

"springs" (29 terms in the case of cluster 6,24) with a single force constant, #.

V-2 Y (R ) @-1)
o
o
AR, = l-liOoz * Ra T Ala T Roa
20& = vector between the lattice sites associated with bond &

The displacement vectors for the two particles associated with bond @ are denoted by

r and r . In the case of a bond between one of the vibrating particles and a fixed
mlo Qo

particle &y, 1s identically zero.

20

Each (ARQ,)2 can be expanded in terms of the di splacement vectors to give in diadic

form

v = :E:{ . BO& §0a Cr 41 §0a§0a .
= &lo ) Ao T T2 20
@ (80 O
(A-2)
. Roosoa
-~ —_— - I }
w]o R2 [ 71e's
(007

Thus each bond contributes three 2 x 2 blocks to the 12 x 12 dynamic matrix. The contri-

bution being specified by the dyadIEOQEOQ/Réa, where ROa is the magnitude of the vector

50&' In the triangular lattice there are three different cases. Letting i and j be the
unit vectors along the x and y cartesian coordinates respectively and a denote the lattice

distance we have



1 3
R — =
a . 3a . Eooo 4 4
Case 1: _130.»2&'+ 7 7 = (A-3)
Ry 3 3
4 4
1 0
R:R
Case 2: R . =ai : =5 = (A-4)
) =N 2
R 0 0
0
R R L .3
1 . 3 *0u0 4 4
Case 3: =<~-ai-<aij: =
K =224 224 R(z) 3 3
4 4

In actual practice the dynamical matrix for each figure was set up automatically
by a computer in an orthogonal cartesian coordinate system. The computer accepted as
input a description of each figure then automatically cycled through the set of bonds,
identified each with one of the above three cases and added the appropriate numbers to
the appropriate elements of the dynamical matrix. After forming each matrix the
eigenvalues were obtained numerically by the general computer program which then

proceeded to calculate the partition function and free energy for that figure.



APPENDIX B: COMBINATORIAL PROBLEMS *t

In the formulation of successive corrections to the Einstein model we encounter
two combinatorial problems. The first one involves obtaining the number Cf:g of Eq. (II-5),
namely the number of ways a figure of type (i,j) can be contained or placed on a figure
of type (4,t) where £ > t. This count was obtained by simple brute force counting
for each figure. The first few results can be found in Eq. (II-3). However, a table
containing the results for all figures through six particles would be prohibitative in

length and we hope that the following few additional examples will adequately explain

the concept. The reader is referred to Table I for the code notation of each figure

= W
Fgg=Wy | *5Wy | # 2y (2 ) Wy g+ W, , v 2, 3+ W5 g (B-1)
Fo,37= Oy,q ¥ 8y )+ Wy ) H AWy # Wy 3 W A,

W
W Ty g Wy o Wy g W g, T ¥e,37

The second problem arises in counting the number of times that a given figure can
be placed on a large lattice of N sites or, in other words, the number of different ways
the given correlated motion can occur among the N particles of a large lattice. 1In
this problem we consider a system under periodic boundary conditions or ignore any
effect due to the boundaries of the system. The general solution to this problem can
be given in terms of the symmetry of each figure.

In 2 general figure pick one point arbitrarily and identify it as the "origin" for
this figure. This "origin" can then be placed at any of N lattice positions. For each
position of the “origin" we can rotate the figure about this "origin" point through
successive angles of 60° and obtain six equivalent figures.

Next consider the mirror image of the given figure obtained by reflection through
a line in the plane. Again place the "origin" point on any onme of the N lattice sites
and by repeated rotation generate again 6N equivalent figures. Thus we see that the

maximum number of ways a given figure can be placed on a lattice is 12N.



2.

We now ask, in counting these 12N positions of the figure, how many figures have
been counted more than once? (a) If the figure has line of symmetry, its mirror image

is equivalent to one of the rotated structures and we have counted every figure twice.
(b) If the figure has an n-fold rotational axis of symmetry perpendicular to the plane

we will count each figure n times in the process described above. Thus in general we

find that
= -2
Ny o 12N/PL,tnL,t (B-2)
P 3 {'2 if the figure has a line of symmetry
Lt 1 otherwise
Ny . = order of a perpendicular rotational axis of symmetry

In this manner the combinatorial numbers By ¢ given in table I were obtained.
3



APPENDIX C: MONATOMIC ONE-DIMENSIONAL CRYSTAL

The method of successive approximations to the Helmholtz Free Energy as outlined
in section II can be easily carried to high order for the one-dimensional crystal. 1In
the first place the recursion relations given by Eq. (II-3) for the triangular lattice
take the following simple form

FL = i (4~s+1) Ws (C-1)
s=1

for the one-dimensional case. This then implies that

W, =F
W, =F, - 2F1 (C-2)
WL=FL-2FL_1+FL_2 L>2

. . . s s 6 . .
Moreover, since the lattice vibration problem can be solved explicitly in this case

each FL can be calculated from the relation

L
F{/kT = 2 {cos wS/T* + 1n(l-exp[-2cos @S/T*])}
s=1

o, = sT/2(4+1) (C-3)

The final result in which the free energy of a macroscopic system of N particles is

expressed as a series of 4 particle correlation corrections has the simple form

F /NKT = El W, /KT (C-4)

Fig. (5) displays a summary of the one-dimensiona2l results. The exact result for
FN/NkT in the thermodynamic limit was calculated from the known frequency distribution
function.6 Although the rate of convergence of this series appears to be rather slow
the £th order result is a smoothly varying function of 1/4 becoming linear in 1/4 for

large £ . It is also interesting to note that the error in truncating the series

rapidly becomes independent of temperature for £ = 6.
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TABLE I

Catalog of the various configurations of the connected subfigures with six or fewer
partlcles, including the identification (4,t) and the associated combinatorial factor
Bp. ¢ DL ¢ are the high temperature corrections to the Helmholtz free energy per

3 b

particle for the figure (4,t). c(-e) denotes c x 107¢

. ~7 . ~7
Figure DL,t 4,t g&,t Figure DL,t 4.t g&,t
— -5.889152(-2) 2,1 3 /
s -6.920838(-5) 4.7 6
e—e—s -7.874179(-3) 3,1 3
e -1.653166(-4) 5,1 3
/ -1.956950(-3) 3,2 6
— o /  -4.165967(-5) 5,2 12
+5.642560(-4) 3,3 2
/\ -3.130337(-6) 5.3 12
e—se—e—s -1.135074(-3) 4,1 3
. _/\ | -2.589990(-5) 5.4 6
/ -2.801903(-4) 4,2 12 _’ :
. — +3.100016(-5) 5,5 6
A\ +1.314161(-5) 4,3 12 \,
. /\7 -3.677286(-4) 5,6 12
SN/ -2.564334(-3) 4.4 3 "
. \ /\ -6.102255¢-7) 5,7 17
\ / -6.920867(-5) 4,5 6 —
; VAN ¥2.335039(-5) 5,8 12

+2.238464(-4) 4,6 2 \



TABLE I (continued)

. ~ . Y ‘
Figure DL,t 1,t gl,,t Figure DL,t L,t By,
/. ./_.\. -6.651535(-7) 5,9 12 \.\ -4.021960(-5) 5,19 6 ;
i
\
\
. . . !
e——e—s  -1.012356(-5) 5,10 6 -1.005453(-5) 5,20 6 ‘
|
'
T _9.932433(-6) 5,11 12 — +7.681256(-6) 5,21 12 ‘
/.\—/.\ -8.276314(-4) 5,12 6 /.—-/ -2.453402(-6) 2,22 6
\.__. -7.368526(-6) 5,13 6 e—o—e—e—e—o -2 .411324(-5) 6,1 3
AV,
/ 4 .
._._/. -6.516965(-5) 5,14 3 e—u—ud -5.054037(-6) 6,2 12
//_\.\ +5.315820(-5) 5,15 6 /\ +3.212535(-7) 6,3 12
. . |
|
* -8 * ‘i
\,_/ -2.453107(-6) 5,16 12 e\ 45TBITAC-6) 6,4 2
'—.—-—.\ o9 1
/. -9.932031(-6) 5,17 12 ._.__._}‘/ -5.331002(-5) 6,5 12
|
\ >- -2.453749(-6) 5,18 6 ./ -2.308170(-7) 6,6 12
L



Figure

o

TABLE 1 (continued)

R

L.t gL,t Figure DL,t 4,t Byt
/\ /  +7.265171(-7) 6,7 12 AT\ -1.450936(-4) 6,17 12
'\ / +3.184141(-7) 6,8 6 ._._./_\. +7.769941(-7) 6,18 12
\ P 3.561017(-7) 6,9 12 o—s—d—%  -5.447873(-8) 6,19 6
—— \/
¢—o——p— +3.184177(-7) 6,10 6 -—-—/-A- -9.303007(-6) 6,20 12
/N . AN
. e -4.505846(-5) 6,11 1 ¢—o—s—e -5.953661(-7) 6,21 6
\_/ \/
- /\
*— g — -]_.761855(-7) 6,12 12 O @ e @@ +1.730139("5) 6,22 12
o/ \‘
/\
v—e—e—  46.272596(-6) 6,13 6 =7 ! .227880(-5) 6,23 3
\ _ /
w  +7.544033(-6) 6,14 12 . +5.672549(-6) 6,24 12
.-——.—'/——}. C——.[——o—.
/.< +2.719698(~6) 6,15 12 o—o—d +8.886209(-6) 6,25 25
[ ]
. ® ‘/
/\ /\ -1.640565(-7) 6,16 6 +4.310650(-6) 6,26 6



TABLE 1 (continued)

Figure DL,t L,t g{,,t Figure DL,t 1,t g{,,t
O c— .\—}l
. AYS +2.919373(-5) 6,27 12 -—-/—- -4.538573(-6) 6,37 6
\ \/
\ /N7
/ +1.204535(-6) 6,28 12 »—s— -1.327272(-5) 6,38 12
\, *
DS +1.970948(-7) 6,29 12 . / -1.488188(-7) 6,39 12
L ] ./—\.—./
[ J l\—/‘
e—e—<  +2.320054(-6) 6,30 12 -—~\7- +2.714931(-5) 6,40 12
/N/ " -5.222400(-5) 6,31 6 / >. -7.590461(-8) 6,41 12
O ——F—g
s—  _4.876445(-5) 6,32 6 /N /T -7.643939(-8) 6,42 12
® \—\-/ e
. 7.865284(-5) 6,33 12 -/. +1.840956(-6) 6,43 12
@ w—— \/ . , O/—\.—o/ . ’
'\\
L] [ ]
o—e -7.675683(-5) 6,34 12 \ / +2.658253(-7) 6,44 6
\/ -
O m— G mm— \.
/N7 -1.339669(-5) 6,35 12 /T -5.531856(-1) 6,45 12
& ®
——e /\ /
/\/\/ -4.497678(-4) 6,36 6 o—p—-r -1.670396(-7) 6,46 12



TABLE I (continued)

~ P
Figure DL,t 4,t gl,,t Figure Lt i,t Bt
AN >
S -3.651692(-6) 6,47 12 / -1.267472(-8) 6,56 12
\./ .—-—/.—l
c—a—s +6.484479(-7) 6,48 12 e -2.869692(-7) 6,57 12
L4 4
\, /
. 5.933998(-D) 6,49 12 /T +1.889715(-6) 6,58 12
/ \
N/ /
o— +2.651359(-7) 6,50 6 _/ -l.374725(-6) 6,59 12
— /
O——o—o/ .\.
/  +1.117337(-5) 6,51 4 / -2.870238(-7) 6,60 12
\. -
o—o—: ' +7.848666(-7) 6,52 12 / -1.442886(-6) 6,61 12
S\ ' ’ \ / ' ’
/ -\

. -9.763426(-8) 6,53 12 . / -3.551613(-7) 6,62 12
o—o— T 2.151137(-8) 6,54 12 /.\ 7.466792(-5) 6,63 2
\./ . ’ ./——\—./-—\. . ’

.\ . /oi——’\
s—e—+  +7.705348(-7) 6,55 12 d—s—s -5.180810(-5) 6,64 6
N/ (-7 N/ )




TABLE 1 (continued)

=)

Figure DL,t L,t gL,t Figure Lt 1,t g&,t
g— & ~— 0 o/
\ -3.491259(-7) 6,65 12 , /  -=5.539132(-7) 6,74 12
g [ ]
\ 7
¢ -9
L] »
. .— / /
\___./ \. -8.660936(-8) 6,66 6 . /- -3.511232(-7) 6,75 12
Ty /o—o &\ /‘
o +2.828401(-7) 6,67 12 \ /- -1.390454(-6) 6,76 6
/ / 3.518671(-7) 6,77 12
. s -8.659845(-8) 6,68 12 N ;o ) 6,
\0——' O e @
. . /
< Vs -8.596544(-8) 6,69 12 \_/ +1.101327(-6) 6,78 12
§ — ./
Py o\ /.
\ >.__. +4.487920(-7) 6,70 12 F—{ -8.652296¢-D 6,79 3
¢ —e ° [
/ —- e
/ -4.960202(-6) 6,71 12 e -1.424829(-6) 6,80 6
l’—'c—'/
o0 & — o /.
\._/ -7.862036(-8) 6,72 6 S -3.516125(-7) 6,81 12
. * [ L
\__./ —\
\ +2.651832(-7) 6,73 12 " -7.831841(-8) 6,82 6
/



Fig. 1:

Fig. 2:
Fig. 3:
Fig. 4:
Fig. 5:

A sectionofatwo dimensional triangular lattice corresponding to
to the close-packed arrangement of rigid disks. The basis vectors for

3& and EQ'

the lattice are given by

Successive approximations to the high-temperature constant
DN=FN/NkT + 2 1n T* as a function of 1/ /1” where 4 is the order of
approximation.

For the triangular lattice AF =F the difference

-F
Approx. Einstein’
between the free energy for a given order of approximation and the free
energy of the Einstein model is plotted as a function of 1/ /1“ where

4 1is the order of approximation. Five isotherms over the temperature

range T* = 0.4 to 2.0 are depicted.

The normal mode model for a typical six particle lattice figure (6,24
in table I.) The force constants which must be considered for nearest
neighbor interactions are depicted as springs. The cartesian coordinates

used in the analysis (Xi’ yi) i=1, -+, 6 are also indicated.

For a one-dimensional model the difference between the specific
free energy for a given order of approximation and the exact specific
free energy is plotted as a function of T* on a logarithmic scale. The
orders of approximation given are 4 = 1 (the Einstein model), 2,3,4,5

and 6.
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